Waveguide mode solver based on Neumann-to-Dirichlet operators and boundary integral equations
نویسندگان
چکیده
For optical waveguides with high index-contrast and sharp corners, existing full-vectorial mode solvers including those based on boundary integral equations typically have only second or third order of accuracy. In this paper, a new full-vectorial waveguide mode solver is developed based on a new formulation of boundary integral equations and the so-called Neumann-to-Dirichlet operators for sub-domains of constant refractive index. The method uses the normal derivatives of the two transverse magnetic field components as the basic unknown functions, and it offers higher order of accuracy where the order depends on a parameter used in a graded mesh for handling the corners. The method relies on a standard Nyström method for discretizing integral operators and it does not require analytic properties of the electromagnetic field (which are singular) at the corners.
منابع مشابه
Efficient high order waveguide mode solvers based on boundary integral equations
For optical waveguides with high index contrast and sharp corners, high order full-vectorial mode solvers are difficult to develop, due to the field singularities at the corners. A recently developed method (the so-called BIENtD method) based on boundary integral equations (BIEs) and Neumannto-Dirichlet (NtD) maps achieves high order of accuracy for dielectric waveguides. In this paper, we deve...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملIty of Modes in a Parallel Plate, Anisotropic Waveguide Using a Modified, Coordinate Transformation
The excitation of forward and backward, Electromagnetic (EM) modes and fields in an anisotropic, parallel plate waveguide (meeting Dirichlet and Neumann boundary conditions), is studied, using a modified coordinate transformation which reduces Maxwell’s equations to the form of a Helmholtz wave equation satisfying Dirichlet and mixed-partial derivative boundary conditions. The EM modes and fiel...
متن کاملSharp High-Frequency Estimates for the Helmholtz Equation and Applications to Boundary Integral Equations
We consider three problems for the Helmholtz equation in interior and exterior domains in R, (d = 2, 3): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems for outgoing solutions, and the interior impedance problem. We derive sharp estimates for solutions to these problems that, in combination, give bounds on the inverses of the combined-field boundary integral operators for ex...
متن کاملA Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates
This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 231 شماره
صفحات -
تاریخ انتشار 2012